Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity
نویسندگان
چکیده
The evolution of starting jet circulation, impulse and kinetic energy are derived in terms of kinematics at the entrance boundary of a semi-infinite axisymmetric domain. This analysis is not limited to the case of parallel jet flows; and the effect of non-zero radial velocity is specifically identified. The pressure distribution along the entrance boundary is also derived as it is required for kinetic energy modelling. This is done without reliance on an approximated potential function (i.e. translating flat plate), making it a powerful analytical tool for any axisymmetric jet flow. The pressure model indicates that a non-zero radial velocity is required for any ‘over-pressure’ at the nozzle exit. Jet flows are created from multiple nozzle configurations to validate this model. The jet is illuminated in cross-section, and velocity and vorticity fields are determined using digital particle image velocimetry (DPIV) techniques and circulation, impulse and kinetic energy of the jet are calculated from the DPIV data. A nonzero radial velocity at the entrance boundary has a drastic effect on the final jet. Experimental data showed that a specific configuration resulting in a jet with a converging radial velocity, with a magnitude close to 40 % of the axial velocity at its maximum, attains a final circulation which is 90–100 % larger than a parallel starting jet with identical volume flux and nozzle diameter, depending on the stroke ratio. The converging jet also attains a final impulse which is 70–75 % larger than the equivalent parallel jet and a final kinetic energy 105–135 % larger.
منابع مشابه
On Approximating the Translational Velocity of Vortex Rings
A method is presented whereby the translational velocity of a vortex ring can be approximated from the total circulation, impulse, and kinetic energy of the vortex system. Assuming a uniform vorticity density, these bulk quantities define a unique stable vortex ring configuration, and the translational velocity can be inferred from this configuration and the system scaling. Here, the accuracy o...
متن کاملNumerical Study of Interaction of Two Plane Parallel Jets
In the present work, a numerical simulation of two parallel turbulent jets was performed. The simulations were carried out by using the standard, the standard and the RSM models. A parametric study was also presented to determine the effect of the nozzles spacing and velocity ratio on the axial and transverse positions of the merge and combined points. Correlations between the various paramet...
متن کاملEffect of Wedge-Shaped Deflectors on Flow Fields of Dual-Stream Jets
The effect of wedge-shaped fan flow deflectors on the mean and turbulent flow-fields of dual-stream jets is investigated. Several wedge-shaped deflector concepts were used to create asymmetry in the plume of a dual-stream jet issuing from a scaled down version of the NASA Glenn ‘5BB’ bypass-ratio 8 turbofan nozzle. The deflector configurations comprised internal and external wedges with and wit...
متن کاملThe significance of vortex ring formation to the impulse and thrust of a starting jet
The recent work of Gharib, Rambod, and Shariff @J. Fluid Mech. 360, 121 ~1998!# studied vortex rings formed by starting jets generated using a piston-cylinder mechanism. Their results showed that vortex rings generated from starting jets stop forming and pinch off from the generating jet for sufficiently large values of the piston stroke to diameter ratio (L/D), suggesting a maximization princi...
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کامل